

Polymer 40 (1999) 7303-7312

polymer

FTIR study of thermal cyclization processes in the synthesis of polyetherimidazopyrrolones

D. Sęk*, B. Kaczmarczyk, E. Schab-Balcerzak

Institute of Polymer Chemistry, Polish Academy of Sciences, ul Marii Curie-Sklodowskiej 34, 41-800 Zabrze, Poland

Received 4 September 1998; received in revised form 4 January 1999; accepted 28 January 1999

Abstract

An FTIR method was used to investigate the thermal cyclization process in synthesis of polyetherimidazopyrrolones from dietherdianhydrides and 3,3'-diaminobenzidine. It was concluded that the highest degree of cyclization to imidazopyrrolone structure is observed in the case of polymer with bisphenol A group having electron-donating character after dynamic heating, though for the all polyether-imides investigated even at 320°C cyclization are not complete. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Thermal cyclization; Polyetherimidazopyrrolones; FTIR spectra

1. Introduction

In our previous article [1] the results of thermal cyclization processes occurring in synthesis of polyesterimidazopyrrolones were presented. It was proved that the structure of diphenols in the diesterdianhydrides influences the cyclization which goes via an amino-imide to imidazopyrrolone structure. The presence of an electron-donating group in the diphenol causes the beginning of cyclization at a lower temperature than in the case when in the diesterdianhydride there is a diphenol with electron-withdrawing group. The cyclization process was investigated by dynamic and isothermal heating.

This article describes the results of similar investigations that led to polyetherimidazopyrrolones.

Likewise as previously, the polyetherimidazopyrrolones studied were obtained in the reaction of 3,3'-diaminobenzidine with dietherdianhydrides exhibiting the same connecting groups as in the case of polyesterimidazopyrrolones. In the first step of the reaction between anhydride group and *o*-diamine the amide-aminoacid is formed which can cyclize via an amino-imide to imidazopyrrolone structure. The reaction route and the structure of the polymers studied is presented in Fig. 1.

In order to determine the influence of the Ar group on the thermal cyclization process the infrared spectroscopy was used and the changes in spectra which proceed during dynamic heating in the range from 20 to 245° C and

2. Experimental

2.1. Materials

300°C were investigated.

Prepolymers with amide-amino-acid structures used for these investigations were obtained as follows:

isothermal heating for definite times at 200, 260 and at

3,3'-diaminobenzidine (1 mmol) was dissolved in 10 ml dry *N*,*N*-dimethylacetamide (DMA) and the stoichiometric amount of the given dietherdianhydride (1 mmol) was added slowly over a period of 30 min. The mixture was stirred for 1 h at room temperature and the polymers were precipitated with ethanol.

The samples investigated were in the form of films obtained by casting solutions of the polymers in DMA onto potassium bromide windows and evaporating at 50°C for 5 h under vacuum.

2.2. Measurements

Infrared spectra were acquired on a BIO-RAD FTS-40A FTIR spectrometer in the range of $4000-700 \text{ cm}^{-1}$ at a resolution of 2 cm⁻¹ and for an accumulated 64 scans. Spectra recorded at elevated temperatures were obtained using Carl Zeiss Jena high temperature control equipment in the temperature range from 20 to 245°C. The samples were heated under nitrogen at the rate of 20°C min⁻¹ and kept at elevated temperatures for 10 min before a spectrum was

^{*} Corresponding author.

^{0032-3861/99/\$ -} see front matter 0 1999 Elsevier Science Ltd. All rights reserved. PII: S0032-3861(99)00122-6

Fig. 1. Scheme of the reaction route and the structure of polymers.

recorded. Additional heating at 260, 300 and 320°C was carried out in a BÜCHI TO-51 furnace under vacuum for 1 h at each temperature and spectra were recorded after cooling to 20°C.

For the isothermal method samples were heated under vacuum at 200°C for 1, 3, 5, 8, 11, 17 h then at 260, 300 and at 320°C for 1 h, FTIR spectra were always recorded after cooling to 20°C.

In order to determine the quantitative relations among the bands which reflected the cyclization process, a WIN-IR curve-fitting program was used in the region of $1850-1550 \text{ cm}^{-1}$. The initial parameters, i.e. the number of peaks, the center, the height and the width of particular peaks, were obtained from the second derivative spectra. An interactive procedure and Gaussian–Lorentzian fitting

of curves were chosen to correct these parameters and compute particular peaks. The accuracy of band area measurements is about 1%. But in the case of the small areas the error may be higher. Therefore, we take into consideration in our discussion only the band areas which change up to one decimal place.

3. Results and discussion

Progress of the thermal cyclization process was studied using infrared spectra in the following regions: $3600-2500 \text{ cm}^{-1}$ —the region characteristic for N–H stretching vibrations of NH₂ amine, NH amide and O–H acid groups; $1800-1700 \text{ cm}^{-1}$ —the region corresponding to C=O

Fig. 2. FTIR spectra of polymer 1, 2, 3 at 20° C in the region $3600-2300 \text{ cm}^{-1}$ (a) and $1800-1540 \text{ cm}^{-1}$ (b).

imide, acid groups and C=O groups in fused pyrrole cycle; $1700-1630 \text{ cm}^{-1}$ —the region characteristic for the amide I bands (free and bonded C=O amide groups) and $1630-1600 \text{ cm}^{-1}$ —the region due to deformation vibrations of NH₂ amine groups and stretching vibrations of C=N groups in fused cycle and vibrations of aromatic ring [1–5].

Absorption band in the region $3600-2500 \text{ cm}^{-1}$: For all the polymers investigated the bands characteristic for the free and bonded NH amide groups are detected at 3400 cm^{-1} and 3356 cm^{-1} , respectively [Fig. 2(a)]. These bands are overlapped by those arising from asymmetrical and symmetrical stretching vibrations of NH₂ amine groups, respectively.

The band at 3065 cm⁻¹ can be ascribed as the overtone of C=O amide groups. The bands corresponding to OHbonded acid group vibrations appear in the spectrum as several shoulders in the region of $3000-2400 \text{ cm}^{-1}$. In the case of polymer 2 additional band observed at 2968 cm⁻¹ ascribed to CH₃ group stretching vibrations is detected.

The areas of overlapping bands in that region were not calculated with regard to very complicated character of the recorded spectra, e.g. unknown influence of hydrogen bonds.

Absorption bands in the region $1800-1700 \text{ cm}^{-1}$: As seen from the spectra [Fig. 2(b)] and curve-fitting calculations (Tables 1–3) the band arising from C=O acid groups is observed at 1712, 1714 and 1713 cm⁻¹ for polymers 1, 2 and 3, respectively. Likewise as for the previously reported polyesterimidazopyrrolones [1] apart from these bands, the bands at ~1777 and ~1724 cm⁻¹ characteristic for asymmetrical and symmetrical C=O imide group vibrations, respectively, are also detected. It can be explained by the

fact that during the preparation of polyamide-aminoacid foils were heated at 50°C for 5 h and some amount of acid and amide groups have reacted.

The results of curve-fitting calculations exhibit that the areas of bands ascribed to imide groups are different for particular compounds and suggest that the highest amount of imide was formed in the case of polymer 1 whereas considerably less amount in polymers 2 and 3.

Absorption bands in the region $1700-1600 \text{ cm}^{-1}$: The spectra [Fig. 2(b)] indicate that polyetheramide-aminoacids investigated exhibit broad band with some shoulders in that region corresponding to bonded and free C=O amide groups (the amide I band).

Curve-fitting calculations (Tables 1–3) reveal the presence of a band assigned to free C=O amide band at 1677, 1671 and 1675 cm⁻¹ for polymers 1, 2 and 3, respectively, a higher area band at 1650 cm⁻¹ for polymers 1 and 2 and at 1654 cm⁻¹ for polymer 3 due to bonded C=O amide group.

In comparison to the polymer 2 the areas of bands ascribed to bonded C=O amide groups are relatively high for other polymers.

Area of the band at 1650 cm^{-1} in the case of polymer 1 are higher in relation to the other polymers with regard to the presence of C=O ketone groups having the same group frequency.

The band characteristic of NH_2 amine groups can be observed at 1625, 1629 and 1623 cm⁻¹ for the polymer 1, 2 and 3, respectively. Nevertheless the band arising from aromatic ring stretching vibrations at ~1600 cm⁻¹ strongly overlaps the bands due to NH_2 and C=N groups vibrations, therefore the values of areas calculated for these bands can

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C=O in 1	ovrrole structure	C=O imide	e svm	C=O acid		C=O free	amide	C=O hone	hed	NH,		C=N in nvr	role ring
v (m ⁻¹) Am Am Am Am Am Am Am Am Am			bluttore succure		c sym.		_		alline	amide + ketone	C=O	21112			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$\nu (\mathrm{cm}^{-1})$	Area	$\nu ~(\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1724	3.070	1712	5.584	1677	5.069	1650	12.235	1625	10.911		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2			1724	2.817	1713	6.693	1677	5.814	1655	12.173	1626	10.446		
1734 1734 2.913 1713 7.888 6.03 6.053 6.153 9.133 6.25 9.176 1758 1724 1201 1731 3.080 1713 8.667 1685 8.373 1623 9.670 1733 10.900 1758 2.198 1721 16.921 1.724 5.080 1713 8.667 1685 8.373 1622 9.670 1333 1758 2.198 1721 16.921 16.573 10.300 1333 1760 5.644 1724 1.233 16.69 5.041 16.3 2.931 10.33 1760 5.641 1724 1.633 5.535 6.69 6.01 10.33 1760 8.013 1723 11.723 11.733 10.300 1373 1760 8.013 1723 11.53 11.693 5.41 661 1.933 1760 8.013 1724 16.59 5.41 16.59 5.41	6			1724	3.410	1713	6.984	1680	5.257	1654	10.889	1624	9.707		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	×			1724	2.913	1713	7.888	1680	6.034	1653	9.433	1625	9.176		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0			1724	3.030	1713	8.984	1679	6.591	1654	9.428	1625	9.876		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1755	0.119	1724	5.080	1713	4.667	1685	5.835	1654	8.677	1624	9.670		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S	1758	0.672	1720	15.443					1653	8.273	1622	10.900		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1758	1.486	1720	16.931					1655	8.405	1623	10.928		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	1758	2.198	1721	16.921					1656	8.978	1622	10.831		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	5 1758	3.258	1721	16.326					1656	8.251	1621	10.953		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5 1758	4.736	1722	15.217					1656	7.961	1620	10.722		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 1760	5.644	1724	14.206					1657	5.076	1623	7.234		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	0 1760	7.857	1727	11.774					1658	5.328	1628	5.498	1619	1.980
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_ ` +	7 1760	8.018	1727	11.523					1659	5.042	1631	2.592	1620	1.393
gion 1830–1530 cm ⁻¹ for polymer 2 (dynamic heating) gion 1830–1550 cm ⁻¹ for polymer 2 (dynamic heating) - C=O in pyrrole structure C=O inide sym. C=O inide sym. C=N in pyrrole ring 1 v (cm ⁻¹) Area v (cm ⁻¹) Area v (cm ⁻¹) Area 2 1722 1.953 1714 6.338 1671 0.601 1560 7.397 1629 13.012 3 1722 1.322 1.3383 1679 2.741 1650 13.795 3 1722 1.322 1.3383 1659 2.341 1656 13.792 3 1722 1.321 2.338 1714 6.395 1677 4.253 1650 13.792 1722 1.722 1.321 1.371 174 6.335 1677 1.322 13.792 1757 0.611 1.722 1.531 1650 1.532 16.37 13.272 1757 0.611 174 5.515 1676 4.570 16.52 13.792 1757 0.611 1720 16.50 16	. ic	2 1760	8.052	1730	11.619					1659	5.141	1631	2.601	1620	1.372
· C=O in pyrrole structure C=O inide sym. C=O acid C=O free amide C=O bonded. amide NH2 C=N in pyrrole ring a ν (cm ⁻¹) Area ν (cm ⁻¹) Λ area </th <th><u></u></th> <th>rion 1850–155</th> <th>0 cm⁻¹ for polyme</th> <th>т 2 (dynamic]</th> <th>heating)</th> <th></th>	<u></u>	rion 1850–155	0 cm ⁻¹ for polyme	т 2 (dynamic]	heating)										
a ν (cm ⁻¹) Area 3 1722 1.328 1714 6.364 1677 4.271 1656 6.899 1627 13.352 1757 0.611 1722 4.371 1675 4.271 1652 13.462 1757	•	C=O in p	yrrole structure	C=O imide	sym.	C=O acid	Ö	=0 free am	ide C	=O bonded.	amide	NH_2		C=N in py	role ring
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 0		V voor	(am ⁻¹)	A *00			(m ⁻¹)		(-1)	A*00	-1- m	Area	(1-m)	A roo
22 1722 1.953 1714 6.921 1671 0.601 1650 7.397 1629 13.012 23 1722 1.883 1715 6.838 1671 1.742 1650 7.397 1629 13.462 20 1722 2.358 1714 6.795 1679 2.241 1656 6.899 1677 13.795 20 1721 2.117 1714 6.364 1677 4.255 1650 7.397 1629 13.462 20 1721 2.117 1714 6.364 1677 4.255 1650 13.795 21 1721 2.117 1714 6.364 1677 4.255 1650 13.205 21 1751 2.111 1714 5.515 1676 4.570 1651 13.252 21 1757 0.611 1720 15.205 1715 2.624 1675 2.871 1652 10.091 8 1757 0.561 1752 2.624 1675 2.871 1652 10.091	. .		AIGa		AICa		ALCA P		ALCA V	(cm)	AIGa) AICA		AICa
23 1722 1.883 1715 6.838 1671 1.742 1650 7.397 1629 13.462 20 1722 2.358 1714 6.795 1679 2.241 1656 6.899 1627 13.795 20 1721 2.717 1714 6.564 1677 4.255 1653 3.506 1627 13.795 30 1721 2.717 1714 5.515 1676 4.570 1651 1.882 1627 13.752 30 1721 4.318 1714 5.515 1676 4.570 1651 1.882 16.27 13.752 31 1757 0.611 1720 15.205 1715 2.624 1675 2.871 1652 10.091 38 1757 0.611 1720 15.205 1715 2.624 1675 2.871 1652 10.091 38 1757 0.962 1720 16.800 15.205 16.023 10.091 36 1758 1.825 1720 16.800 16.22 10.	E.	~		1722	1.953	1714 0	5.921 16	571 0	.601 10	550	7.542	1629	13.012		
20 1722 2.358 1714 6.795 1679 2.241 1656 6.899 1627 13.795 27 1721 2.717 1714 6.364 1677 4.255 1653 3.506 1627 13.525 39 1721 2.717 1714 5.515 1676 4.570 1651 1.882 16.27 13.252 30 1721 4.318 1714 5.515 1676 4.570 1651 1.882 16.27 13.252 31 1757 0.611 1722 4.685 1716 4.711 1652 10.091 38 1757 0.611 1720 15.205 1715 2.624 1675 2.871 1652 10.091 38 1757 0.962 1720 16.800 16.25 10.091 1625 10.091 38 1757 0.962 1720 14.814 1758 16.25 10.073 31 1758 1.825 1720 16.079 16.23 9.610 16.23 9.610 35<	21	~		1722	1.883	1715 0	5.838 16	571 1	.742 16	550	7.397	1629	13.462		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×.	<u> </u>		1722	2.358	1714 0	5.795 16	579 2		556	6.899	1627	13.795		
89 1721 4.318 1714 5.515 1676 4.570 1651 1.882 1627 14.628 29 1722 4.685 1715 4.711 1675 4.271 1652 1.327 1625 9.975 52 1721 6.305 1715 2.624 1675 4.271 1652 1.039 1624 10.353 77 1757 0.611 1720 15.205 2.624 1675 2.871 1652 10.091 98 1757 0.962 1720 16.800 5.2624 1675 2.871 1652 10.073 74 1757 0.962 1720 16.079 5.624 1675 10.073 74 1757 0.962 1720 14.814 1625 10.073 66 1758 1.825 1720 14.916 1623 9.801 56 1758 1.825 10.866 1623 9.810 1623 9.610 56 1750 14.814 1756 10.886 1623 9.610 1623 <td>5</td> <td>7</td> <td></td> <td>1721</td> <td>2.717</td> <td>1714 0</td> <td>5.364 10</td> <td>577 4</td> <td>.255 10</td> <td>553</td> <td>3.506</td> <td>1627</td> <td>13.252</td> <td></td> <td></td>	5	7		1721	2.717	1714 0	5.364 10	577 4	.255 10	553	3.506	1627	13.252		
9 1722 4.685 1715 4.711 1675 4.271 1652 1.327 1625 9.975 7 1757 0.611 1720 15.205 2.871 1652 1.039 1625 10.091 8 1757 0.611 1720 15.205 2.871 1652 1.039 16.25 10.091 8 1757 0.775 1720 15.205 2.871 1652 10.091 8 1757 0.775 1720 16.079 16.25 10.073 11 1758 1757 0.962 1720 14.814 1625 10.072 16 1.758 1.825 1720 14.814 1755 16.23 9.801 17 1758 1.825 1720 14.814 1623 9.610 1662 9.610 17 1758 1.825 1720 14.814 1756 16.23 9.610 16556 17 0.5654 1726 10.886 1.623 2.644 1620 1.656 17 6.424	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		1721	4.318	1714	5.515 16	676 4	570 16	551	1.882	1627	14.628		
77 1721 6.305 1715 2.624 1675 2.871 1652 10.33 77 1757 0.611 1720 15.205 16.25 10.091 98 1757 0.611 1720 15.205 16.091 98 1757 0.775 1720 16.800 16.25 10.091 74 1757 0.962 1720 16.079 16.25 10.073 11 1758 1720 16.079 16.079 16.25 10.022 41 1758 1.825 1720 14.814 1623 9.801 56 1759 2.285 1722 14.906 1623 9.801 51 1605 5.654 1726 10.886 1623 9.610 53 1760 6.424 1729 8.649 2.062 1619 3.042	ž			1722	4 685	1715	4711 16	75 4	11 170	52	1 327	1625	9 975		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 82			1721	6 305	1715	0 624 16	275 2 275 2	871 16	52	1 039	1624	10.353		
	• • •	1757	0.611	1720	15 205		-	2	110	1	10011	1625	10/01		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~	1757	0.775	1720	16 800							1625	10.073		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.000	07/1	1 6 070							2021	0.0001		
17.50 1.02.0 1.02.0 9.610 5 1759 2.285 1722 14.906 3 1760 5.654 1726 10.886 3 1760 6.424 1729 8.649	_	10/1 +	1 275	07/1	10.0/9							C701	0.001		
3 1760 5.654 1726 10.886 3 1760 5.654 1726 10.886 3 1760 6.424 1729 8.649		05/1 1	700.1 201 r	07/1	14.014							C701	7.091		
3 1760 6.424 1729 8.649 1629 2.062 1619 3.042		60/1 0	C07.7	9021	10.886							0701 1678	7.664	1620	1 656
		1760		07/1	0 640							1 620	7007	1610	
		00/1 00	0.424	1/29	8.049							1029	700.2	1019	5.042

$\begin{array}{c c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	=0 imide sym. C (cm ⁻¹) Area ν	=O arid							
$\begin{array}{c c} {\rm cm}^{-1} {\rm)} & {\rm Area} & \nu ({\rm cm} \\ \hline 1722 \\ 1722 \\ 1721 \\ 17$	(cm^{-1}) Area ν		C=O free ami	de C=O b	onded amide	NH_2		≔N in pyrro	le ring
1722 1722 1722 1721 1721 1721 1721 1721		(cm^{-1}) Area	$\nu \ (\mathrm{cm}^{-1}) \mathrm{A}$	rea ν (cm ⁻	-1) Area	$ \nu ({\rm cm}^{-1})_{-1} $	Area <i>v</i>	(cm^{-1})	Area
1722 1721 1721 1721 1721 1721 1721 1721	122 1.629 1	713 6.228	1675 2.	398 1654	8.720	1623	13.366		
1721 1721 1721 1721 1721 1721 1721 1721	1.577 1	714 6.518	1676 2.	211 1654	8.565	1623	13.313		
1721 1721 1721 1721 1721 1721 1721 1720 1720	721 1.749 17	713 6.700	1678 1.	757 1655	8.273	1623	13.975		
1721 1721 1721 1721 1721 1721 1729 1719 171	721 1.740 1	713 6.722	1678 1.	726 1655	7.787	1623	13.940		
721 757 0.373 757 0.589 756 0.970	721 2.671 17	714 5.070	1679 2.	294 1655	4.539	1623	11.970		
757 0.373 1721 757 0.373 1719 757 0.589 1719 756 0.970 1719	721 4.226 17	711 8.667	1671 5.	175 1653	1.217	1623	13.362		
757 0.373 1719 757 0.589 1719 756 0.970 1719	721 14.988					1622	13.401		
757 0.589 1719 756 0.970 1719	719 14.923					1620	13.266		
756 0.970 1719	719 15.014					1619	12.773		
	719 14.581					1618	12.427		
757 2.045 1720	720 12.622					1617	9.993		
759 3.039 1722	722 11.715					1625	8.011		
760 4.379 1725	725 10.921					1626	4.467 1	617	2.544
760 5.992 1729	729 8.383					1633	1.547 1	620	3.721
761 5.942 1730	730 8.556					1634	1.279 1	620	4.076

Fable 3

be erroneous and should be treated as additional information.

4. Thermal investigations

4.1. Dynamic heating

In order to determine the progress of thermal cyclization process occurring during dynamic heating, samples were heated and FTIR spectra at 20, 50, 80, 100, 120, 140, 160, 180, 200, 220, 245°C and after cooling were recorded.

At the first stage of the dehydration reaction the formation of polyether-amino-imide took place, which is reflected in the FTIR spectra by the decrease in the intensities of the bands characteristic for acid and amide groups and a simultaneous increase in the intensities of the bands corresponding to the imide groups.

The second stage of cyclization process causes the formation of a polyetherimidazopyrrolone structure. This is associated with a decrease in the intensities of bands arising from imide groups and NH_2 amine groups in FTIR spectrum. The process should proceed with the simultaneous appearance of new bands due to C=O and C=N group vibrations in the fused cycle at about 1755 and 1620 cm⁻¹, respectively.

Polymer 1: As mentioned earlier, some amount of imide formed during the foil preparation is present at 20°C. FTIR spectra [Fig. 3(a) and (b)] and curve-fitting calculations (Table 1) indicate that during heating to 120°C no marked changes in areas of the bands ascribed to imide and also acid groups can be detected. Some small changes appearing in areas of the amide I bands follow as an effect of breaking hydrogen bonds formed in amide groups. Increase in areas of bands due to C=O imide groups (1777 and 1724 cm⁻¹) is observed at 140°C but distinguished changes can be seen at 160°C. Simultaneously the areas of bands arising from C=O acid and C=O amide groups (1711, 1679 and 1659 cm⁻¹) are systematically decreasing and at 160°C they are not observed.

This is confirmed from the features in the region $3000-2400 \text{ cm}^{-1}$. FTIR spectrum [Fig. 3(a)] indicates that at 160°C bands arising from OH acid and NH amide groups disappear.

However the bands assigned to C=O groups in fused cycle at 1756 cm⁻¹ can be observed previously at 140°C but the further increase in area of this band until 245°C is very small. Little decrease in areas of bands characteristic for imide groups starts from 200°C. Simultaneously till 245°C the changes in areas of band arising from NH₂ groups are only slightly visible. After cooling to 20°C, small shifts and changes in areas in relation to the spectrum recorded at 245°C are observed.

Further heating was led in the furnace under vacuum at 260, 300 and then at 320°C. FTIR spectra were recorded after cooling the samples to 20°C.

Fig. 3. FTIR spectra of polymer 1 at 20 (--), 160 (.....), 260 (---) and 300°C (--) in the region 3600-2300 cm⁻¹ (a) and 1800-1540 cm⁻¹ (b).

As seen from curve-fitting calculations obtained from the spectrum acquired after cooling from 260° C a relatively high increase in area of the band due to C=O in fused cycle takes place at this temperature. Simultaneously, the band due to C=N groups is detected. The changes noticed after heating the samples at 300°C are rather small and even in this case bands arising from imide groups are still observed. Further heating at 320°C does not make any marked changes.

These results confirm that the polyether-amino-imide with benzophenone connecting group forms at 160°C and undergoes thermal cyclization mainly at 260°C. However, relatively big amount of imide and amine groups remains unreacted, even after heating at 320°C.

Polymer 2: In polymer 2 lesser amount of imide groups formed during drying of the film is present (Table 2) in comparison to polymer 1. Continuous but rather low changes caused by temperature increase follow slowly until 160°C. At 160°C the bands ascribed to C=O acid and C=O amide groups are still observed. Curve-fitting calculations and FTIR spectra [Fig. 4(a) and (b)] indicate that the highest increase in areas of bands corresponding to C=O imide groups (1776 and 1722 cm^{-1}) is observed at 180°C. However, at this temperature small band at 1757 cm^{-1} due to C=O groups in the fused cycle is also present. During further heating from 180 to 245°C only slight decreases in areas of bands due to C=O imide groups and NH₂ amine groups (1629 cm⁻¹) are observed with simultaneous small increase in area of the band at 1757 cm⁻¹. The spectrum obtained after cooling to 20°C is similar to that acquired at 245°C. More remarkable changes in the spectrum follow at 260°C but further heating at 300°C does not give any marked changes. FTIR spectrum and curve-fitting calculations exhibit that even at 320°C, bands arising from imide groups are still detected.

Thus it proves that in polyetheramide-aminoacid with a bisphenol A connecting group, imidization process runs mainly at 180°C whereas the cyclization to the imidazopyrrolone structure takes place at 260°C.

Polymer 3: Polymer 3 contains the smallest amount of imide groups formed during drying of the film in comparison to the other polymers. FTIR spectra [Fig. 5(a) and (b)] and curve-fitting calculations (Table 3) exhibit that during heating to 140°C the changes in areas of bands follow slowly. Remarkable increase in areas of bands due to imide groups (1777, 1722 cm⁻¹) occurs at 160°C and at this temperature the bands ascribed to C=O acid and amide groups are not detected. Also FTIR spectrum obtained at 160°C in the region of $3500-2500 \text{ cm}^{-1}$ does not exhibit the bands assigned to OH acid and NH amide groups [Fig. 5(a)]. The small area band at 1757 cm⁻¹ arising from C=O groups in the fused cycle appears at 180°C but more visible increase in area of this band begins from 245°C and follows continuously to 300°C. The bands corresponding to C=N groups in pyrrolone cycle (1617 cm^{-1}) are detected at 260°C.

It may be concluded that polyether-amino-imide with a catechol connecting group is formed at 160°C and the cyclization to imidazopyrrolone structure proceeds continuously from 180°C.

For all the polymers investigated, a shift of the band ascribed to C=O imide group symmetrical vibrations is observed from 1722 to 1730 cm^{-1} . This can be probably caused by changes in the ordering of polymers after heating.

Fig. 4. FTIR spectra of polymer 2 at 20 (—), 180 (·····), 260 (---) and 300°C (—) in the region 3600–2300 cm⁻¹ (a) and 1800–1540 cm⁻¹ (b).

4.2. Isothermal heating

During isothermal heating the samples were heated under vacuum at 200°C at first for 1 h and after cooling to 20°C FTIR spectrum was recorded. After this samples were heated at 200°C for definite time periods and then heated at 260 and 300°C. The total time for heating at 200°C and the results of curve-fitting calculations obtained for the spectra acquired during isothermal heating are shown in the Tables 4–6. Each time the spectra were recorded after cooling to 20°C.

Table 7 exhibits the ratio of the areas of bands due to C=O groups in the pyrrolone structure to the areas of

bands ascribed to C=O imide group symmetrical vibrations.

For polymer 1, as for the other polymers investigated already, after heating at 200°C for 1 h low area bands corresponding to imidazopyrrolone structure can be detected (Tables 4–6). Further heating at 200°C even for 17 h, at 260°C and then at 300°C for 1 h causes a continuous increase in areas of the bands corresponding to polyimidazopyrrolone structure and consequently a simultaneous decrease in areas of bands ascribed to C=O imide and NH₂ amine groups. Comparing the results of curve-fitting calculations obtained for polymer 1 during the dynamic and isothermal heating (Tables 1, 4 and 7) can be noticed that

Fig. 5. FTIR spectra of polymer 3 at 20 (--), 160 (.....), 260 (---) and 300°C (--) in the region 3600-2300 cm⁻¹ (a) and 1800-1540 cm⁻¹ (b).

The resul	ts of curve fitti	ing in the	region of 1850	$0-1550~{ m cm}^{-1}$;	for polymer 1	(isothermal	heating)									
Time (h)	C=O imide	asym.	C=O in py	rrole structure.	. C=0 ii	mide sym.	C=O acid		C=O free ¿	amide	C=O bonde amide + C ketone	D=	NH_2		C=N in pyrr	ole ring
	$ u \ (\mathrm{cm}^{-1}) $	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	ν (cm ⁻	- ¹) Area	$ u \; (\mathrm{cm}^{-1}) $	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area
200°C																
0	1777	0.576			1723	4.427	1713	5.269	1677	5.818	1653	12.230	1626	9.896		
1	1778	2.491	1759	1.586	1722	13.111					1656	8.170	1626	9.295		
3	1778	2.163	1759	2.388	1722	12.334					1657	7.417	1625	7.809		
5	1779	2.181	1760	3.430	1723	10.699					1658	606.9	1625	6.295		
8	1779	1.203	1760	3.793	1723	10.332					1657	6.562	1625	6.186		
11	1780	1.115	1760	4.110	1724	9.321					1658	5.510	1625	5.786		
17	1780	1.259	1760	4.162	1725	9.189					1658	4.085	1625	5.118		
260°C			1													
1 2000	1781	1.860	1760	5.080	1728	8.541					1658	4.018	1628	2.144	1620	1.239
300 ⁻ C	1782	1 504	1760	6 833	1731	8 966					1659	4 736	1631	1 267	1620	4 465
-	70/1	1.001	1 / 00	CC0.0	10/1	002.0					CONT	0.07.4	TCOL	1.201	10701	
Table 5 The resuli	is of curve fitti	ing in the	region of 185($0-1550~{ m cm}^{-1}$ 1	for polymer 2	(isothermal	heating)									
Time (h)	C=O imide a	isym.	C=0 in pyrrol	le structure	C=O imide	sym. C=	O acid	C=0 fr	ee amide	C=0 bon	ded amide	NH_2		C=N i	n pyrrole rin	51
	" (cm ⁻¹)	Area	" (cm ⁻¹)	Area	" (cm ⁻¹)	Area u (-m ⁻¹ , Area	_ u_(cm_	1) Area	" (cm ⁻¹)	Area	, (cm	-1) A rea	. (cm	-1) Area	
		17174	/	1,1104		1 1 1 1 1 1	cm / 100		1 1700	(ma) 4	1 11 11	TTA) 4	1 1111		1 1111	
200°C																
0,	17/6	0.410			1722	2.595 171	(3 0.245	16/1	0.650	1650	1.334	1630	12.010	_		
- ,	1//0	1./30	1/28 1750	1.003	17/1	1 66./1						1624	0 402			
n v	1//8	1 330	96/1	21C.2	1723	14 060						1620	5.425 5.881	~ _		
, œ	1779	1 308	1760	3 297	1723	14 823						1627	5 677	7 1618	0 47	
11	1779	1.110	1760	3.763	1723	14.074						1627	4.150) 1618	0.69	
17	1779	1.045	1760	4.212	1724	12.942						1628	3.191	1619	0.98^{2}	-
260°C																
1 2000 C	1781	0.699	1760	6.386	1728	8.799						1628	2.253	3 1618	2.25	7
ר שטנ 1	1782	0.804	1760	6.907	1730	8.602						1629	2.412	2 1619	2.480	10

D. Sęk et al. / Polymer 40 (1999) 7303–7312

Table 6 The resul	ts of curve fitt	ting in th	e region 1850-	1550 cm^{-1} for	r polymer 3 (:	isothermal	heating)									
Time (h)	C=O imide	asym.	C=O in pyrrc	ole structure	C=O imide	e sym.	C=O acid		C=0 free a	umide	C=O bonded	1 amide	NH_2		C=N in pyrre	ole ring
	$ \nu \ (\mathrm{cm}^{-1}) $	Area	$\nu ({ m cm}^{-1})$	Area	$\nu ~(\mathrm{cm}^{-1})$	Area	$\nu \ (\mathrm{cm}^{-1})$	Area 1	ν (cm ⁻¹)	Area	$\nu \ ({ m cm}^{-1})$	Area	$\nu ({\rm cm}^{-1})$	Area	ν (cm ⁻¹)	Area
200°C																
0	1777	0.357			1722	1.822	1714	7.424 1	1673	5.280	1653	6.441	1624	13.488		
-	1777	1.458	1759	1.579	1721	14.931							1623	10.844		
33	1778	1.185	1759	2.368	1722	13.287							1622	8.214		
5	1779	1.063	1759	2.334	1722	12.188							1623	7.478		
8	1779	0.836	1760	2.514	1722	11.360							1623	6.358		
11	1780	0.845	1760	2.710	1723	11.015							1623	6.326		
17	1780	0.790	1760	2.733	1724	10.341							1622	5.210		
260°C																
1	1781	0.677	1760	4.185	1728	7.700							1628	4.239	1618	1.552
300°C																
1	1782	0.586	1760	4.888	1730	7.114							1629	1.720	1618	2.998

despite the fact that after dynamic heating at 200°C the ratio of band corresponding to C=O group in the fused cycle to that characteristic for C=O imide group symmetrical vibrations is almost the same as after isothermal heating at 200°C for 1 h, slightly better cyclization to imidazopyrrolone structure after heating at 260°C is observed during dynamic heating.

As seen in the Tables 5 and 7 polymer 2, contrary to the other polymers, exhibits better cyclization to imidazopyrrolone structure during isothermal heating at 200, 260 and 300° C then during dynamic heating. The band ascribed to C=N groups in pyrrole ring is recorded even after heating at 200°C for 8 h.

Curve-fitting calculations obtained for the polymer 3 (Table 6) reveal that during isothermal heating at 200°C a relatively small increase in areas of the band assigned to C=O in pyrrolone ring is observed. A higher increase is recorded after heating at 260°C (Table 7). After heating at 300°C a slightly higher degree of cyclization to imidazopyrrolone structure is observed in the case of dynamic heating.

The observed changes between dynamic and isothermal heating can be explained by different conditions of the heating processes: in the case of dynamic heating cyclization runs from 20 to 245°C under nitrogen without cooling for recording the spectra while during isothermal heating cyclization proceeds under vacuum and samples were cooled before recording the spectra. However, during dynamic heating the polymers were kept at the elevated temperature for 10 min.

5. Conclusions

The observations may indicate that the progress of thermal imidization and cyclization to imidazopyrrolone rings depend on the structures of dietheranhydrides used for polycondensation with 3,3'-diaminobenzidine.

The presence of a catechol group in the middle of dietheranhydride causes the imidization process to take place at 160°C during dynamic heating, whereas the cyclization to imidazopyrrolone structure proceeds continuously from 180°C. Relatively small increase in imidazopyrrolone ring is noticed during isothermal heating at 200°C even for 17 h. Almost the same degree of cyclization is observed after both dynamic and isothermal heating at 300°C.

The electron-donating character of a bisphenol A group causes that during dynamic heating imidization proceeds mostly at 180°C and the cyclization to imidazopyrrolone structure takes place mainly at 260°C. Better cyclization at 200, 260 and 300°C is observed during isothermal heating.

In the case of polymer with the a benzophenone connecting group exhibiting electron-withdrawing character imide structure forms at 160°C and undergoes the cyclization to imidazopyrrolone structure at 260°C. Better cyclization

Temp. (°C)	$A_{\rm P}/A_{ m im}{}^{ m a}$ Polymer 1		Polymer 2		Polymer 3	
	Dynamic heating	Isothermal heating	Dynamic heating	Isothermal heating	Dynamic heating	Isothermal heating
200	0.129	0.121/1 h	0.046	0.061/1 h	0.039	0.106/1 h
200	—	0.453/17 h	—	0.325/17 h	—	0.264/17 h
260	0.667	0.595	0.519	0.726	0.401	0.544
300	0.696	0.762	0.743	0.803	0.715	0.687

 Table 7

 The ratios of the area of bands corresponding to imidazopyrrolone and imide structure

 ${}^{a}A_{p}/A_{im}$ is the ratio of the area of band due to C=O group in imidazopyrrolone structure to the area of band corresponding to C=O imide group symmetrical vibrations.

after heating at 300°C is observed during isothermal heating.

References

- [1] Sęk D, Kaczmarczyk B, Schab-Balcerzak E. Polymer, submitted.
- [2] Dolphin D, Wick A. Tabulation of infrared spectral data. London: Wiley, 1977.
- [3] Lajus LA, Bessonow MI, Koton MM, Florinskij FS. Wysokomol Soed 1970;XII(A):1834.
- [4] Bellamy LJ. The infrared spectra of complex molecules. London: Chapman and Hall, 1975.
- [5] Cross AD, Jones RA. An introduction to practical infrared spectroscopy. London: Butterworths, 1969.

Although the degrees of cyclization to imidazopyrrolone structure obtained for all the polymers investigated, after heating at 300°C differ a little, a slightly higher degree is observed in the case of polymer with electron-donating bisphenol A group after isothermal heating. However for the all polymers investigated the cyclization was not complete, even at 320°C.

Acknowledgements

This work was carried out under financial support of the Scientific Research Committee (grant No 3T09A 123 10).